Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway.
نویسندگان
چکیده
Terminally misfolded proteins are selectively recognized and cleared by the endoplasmic reticulum-associated degradation (ERAD) pathway. SEL1L, a component of the ERAD machinery, plays an important role in selecting and transporting ERAD substrates for degradation. We have determined the crystal structure of the mouse SEL1L central domain comprising five Sel1-Like Repeats (SLR motifs 5 to 9; hereafter called SEL1L(cent)). Strikingly, SEL1L(cent) forms a homodimer with two-fold symmetry in a head-to-tail manner. Particularly, the SLR motif 9 plays an important role in dimer formation by adopting a domain-swapped structure and providing an extensive dimeric interface. We identified that the full-length SEL1L forms a self-oligomer through the SEL1L(cent) domain in mammalian cells. Furthermore, we discovered that the SLR-C, comprising SLR motifs 10 and 11, of SEL1L directly interacts with the N-terminus luminal loops of HRD1. Therefore, we propose that certain SLR motifs of SEL1L play a unique role in membrane bound ERAD machinery.
منابع مشابه
Specific degradation of proteins within the secretory pathway
Background: The endoplasmic reticulumassociated degradation (ERAD) is a cellular mechanism to eliminate misfolded proteins. Results: Fusion of a target-binding domain to a fragment of the ERAD-associated protein SEL1L induces specific degradation of secretory and membrane-bound target proteins. Conclusion: The new recombinant proteins (degradins) efficiently induce degradation of targets within...
متن کاملEDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex.
Terminally misfolded or unassembled secretory proteins are retained in the endoplasmic reticulum (ER) and subsequently cleared by the ER-associated degradation (ERAD) pathway. The degradation of ERAD substrates involves mannose trimming of N-linked glycans; however, the mechanisms of substrate recognition and sorting to the ERAD pathway are poorly defined. EDEM1 (ER degradation-enhancing alpha-...
متن کاملSEL1L Regulates Adhesion, Proliferation and Secretion of Insulin by Affecting Integrin Signaling
SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix inter...
متن کاملHow viruses hijack the ERAD tuning machinery.
An essential step during the intracellular life cycle of many positive-strand RNA viruses is the rearrangement of host cell membranes to generate membrane-bound replication platforms. For example, Nidovirales and Flaviviridae subvert the membrane of the endoplasmic reticulum (ER) for their replication. However, the absence of conventional ER and secretory pathway markers in virus-induced ER-der...
متن کاملEDEM2 and OS-9 Are Required for ER-Associated Degradation of Non-Glycosylated Sonic Hedgehog
Misfolded proteins of the endoplasmic reticulum (ER) are eliminated by the ER-associated degradation (ERAD) in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016